Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.245
1.
FASEB J ; 38(10): e23669, 2024 May 31.
Article En | MEDLINE | ID: mdl-38747734

Amomum xanthioides (AX) has been used as an edible herbal medicine to treat digestive system disorders in Asia. Additionally, Lactobacillus casei is a well-known probiotic commonly used in fermentation processes as a starter. The current study aimed to investigate the potential of Lactobacillus casei-fermented Amomum xanthioides (LAX) in alleviating metabolic disorders induced by high-fat diet (HFD) in a mouse model. LAX significantly reduced the body and fat weight, outperforming AX, yet without suppressing appetite. LAX also markedly ameliorated excessive lipid accumulation and reduced inflammatory cytokine (IL-6) levels in serum superior to AX in association with UCP1 activation and adiponectin elevation. Furthermore, LAX noticeably improved the levels of fasting blood glucose, serum insulin, and HOMA-IR through positive regulation of glucose transporters (GLUT2, GLUT4), and insulin receptor gene expression. In conclusion, the fermentation of AX demonstrates a pronounced mitigation of overnutrition-induced metabolic dysfunction, including hyperlipidemia, hyperglycemia, hyperinsulinemia, and obesity, compared to non-fermented AX. Consequently, we proposed that the fermentation of AX holds promise as a potential candidate for effectively ameliorating metabolic disorders.


Amomum , Diet, High-Fat , Fermentation , Lacticaseibacillus casei , Obesity , Animals , Diet, High-Fat/adverse effects , Mice , Obesity/metabolism , Male , Lacticaseibacillus casei/metabolism , Amomum/chemistry , Mice, Inbred C57BL , Probiotics/pharmacology , Uncoupling Protein 1/metabolism , Insulin Resistance , Mice, Obese , Adiponectin/metabolism , Insulin/metabolism , Insulin/blood , Blood Glucose/metabolism
2.
Sci Rep ; 14(1): 10789, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734719

Brown adipocytes are potential therapeutic targets for the prevention of obesity-associated metabolic diseases because they consume circulating glucose and fatty acids for heat production. Angiotensin II (Ang II) peptide is involved in the pathogenesis of obesity- and cold-induced hypertension; however, the mechanism underlying the direct effects of Ang II on human brown adipocytes remains unclear. Our transcriptome analysis of chemical compound-induced brown adipocytes (ciBAs) showed that the Ang II type 1 receptor (AGTR1), but not AGTR2 and MAS1 receptors, was expressed. The Ang II/AGTR1 axis downregulated the expression of mitochondrial uncoupling protein 1 (UCP1). The simultaneous treatment with ß-adrenergic receptor agonists and Ang II attenuated UCP1 expression, triglyceride lipolysis, and cAMP levels, although cAMP response element-binding protein (CREB) phosphorylation was enhanced by Ang II mainly through the protein kinase C pathway. Despite reduced lipolysis, both coupled and uncoupled mitochondrial respiration was enhanced in Ang II-treated ciBAs. Instead, glycolysis and glucose uptake were robustly activated upon treatment with Ang II without a comprehensive transcriptional change in glucose metabolic genes. Elevated mitochondrial energy status induced by Ang II was likely associated with UCP1 repression. Our findings suggest that the Ang II/AGTR1 axis participates in mitochondrial thermogenic functions via glycolysis.


Adipocytes, Brown , Angiotensin II , Glycolysis , Mitochondria , Thermogenesis , Uncoupling Protein 1 , Humans , Adipocytes, Brown/metabolism , Adipocytes, Brown/drug effects , Glycolysis/drug effects , Angiotensin II/pharmacology , Angiotensin II/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Thermogenesis/drug effects , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Lipolysis/drug effects , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 1/genetics , Glucose/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism
3.
J Diabetes Res ; 2024: 5511454, 2024.
Article En | MEDLINE | ID: mdl-38736904

Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.


Adipogenesis , Adipose Tissue, Brown , Adipose Tissue, White , Diet, High-Fat , Lipase , Mice, Inbred C57BL , Animals , Mice , Male , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Lipase/metabolism , Lipase/genetics , Obesity/metabolism , Lipolysis , Uncoupling Protein 1/metabolism , Fibroblast Growth Factors/metabolism , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Adipocytes/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Lipogenesis , Acyltransferases
4.
Am J Physiol Endocrinol Metab ; 326(5): E696-E708, 2024 May 01.
Article En | MEDLINE | ID: mdl-38568151

Glycogen is a form of energy storage for glucose in different tissues such as liver and skeletal muscle. It remains incompletely understood how glycogen impacts on adipose tissue functionality. Cold exposure elevated the expression of Gys1 that encodes glycogen synthase 1 in brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT). The in vivo function of Gys1 was analyzed using a mouse model in which Gys1 was deleted specifically in adipose tissues. Under normal chow conditions, Gys1 deletion caused little changes to body weight and glucose metabolism. Deletion of Gys1 abrogated upregulation of UCP1 and other thermogenesis-related genes in iWAT upon prolonged cold exposure or treatment with ß3-adrenergic receptor agonist CL-316,243. Stimulation of UCP1 by CL-316,243 in adipose-derived stromal cells (stromal vascular fractions, SVFs) was also reduced by Gys1 deletion. Both the basal glycogen content and CL-316,243-stimulated glycogen accumulation in adipose tissues were reduced by Gys1 deletion. High-fat diet-induced obesity and insulin resistance were aggravated in Gys1-deleted mice. The loss of body weight upon CL-316,243 treatment was also abrogated by the loss of Gys1. In conclusion, our results underscore the pivotal role of glycogen synthesis in adaptive thermogenesis in beige adipose tissue and its impact on diet-induced obesity in mice.NEW & NOTEWORTHY Glycogen is one of major types of fuel reserve in the body and its classical function is to maintain blood glucose level. This study uncovers that glycogen synthesis is required for beige fat tissue to generate heat upon cold exposure. Such a function of glycogen is linked to development of high-fat diet-induced obesity, thus extending our understanding about the physiological functions of glycogen.


Adipose Tissue, Beige , Diet, High-Fat , Glycogen , Obesity , Thermogenesis , Animals , Thermogenesis/genetics , Thermogenesis/physiology , Mice , Obesity/metabolism , Obesity/genetics , Adipose Tissue, Beige/metabolism , Glycogen/metabolism , Glycogen/biosynthesis , Male , Mice, Knockout , Mice, Inbred C57BL , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Glycogen Synthase/metabolism , Glycogen Synthase/genetics , Cold Temperature , Adaptation, Physiological , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics
5.
Mol Nutr Food Res ; 68(8): e2300861, 2024 Apr.
Article En | MEDLINE | ID: mdl-38566521

SCOPE: Brown rice, the most consumed food worldwide, has been shown to possess beneficial effects on the prevention of metabolic diseases. However, the way in which maternal brown rice diet improves metabolism in offspring and the regulatory mechanisms remains unclear. The study explores the epigenetic regulation of offspring energy metabolic homeostasis by maternal brown rice diet during pregnancy. METHODS AND RESULTS: Female mice are fed brown rice during pregnancy, and then body phenotypes, the histopathological analysis, and adipose tissues biochemistry assay of offspring mice are detected. It is found that maternal brown rice diet significantly reduces body weight and fat mass, increases energy expenditure and heat production in offspring. Maternal brown rice diet increases uncoupling protein 1 (UCP1) protein level and upregulates the mRNA expression of thermogenic genes in adipose tissues. Mechanistically, protein kinase A (PKA) signaling is likely responsible in the induced thermogenic program in offspring adipocytes, and the progeny adipocytes browning program is altered due to decreased level of DNA methyltransferase 1 protein and hypomethylation of the transcriptional coregulator positive regulatory domain containing 16 (PRDM16). CONCLUSIONS: These findings demonstrate that maternal brown rice during pregnancy improves offspring mice metabolic homeostasis via promoting adipose browning, and its mechanisms may be mediated by DNA methylation reprogramming.


Cyclic AMP-Dependent Protein Kinases , DNA Methylation , Oryza , Signal Transduction , Animals , Female , Pregnancy , Cyclic AMP-Dependent Protein Kinases/metabolism , Mice , Thermogenesis , Adipose Tissue, Brown/metabolism , Energy Metabolism , Maternal Nutritional Physiological Phenomena , Mice, Inbred C57BL , Diet , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Male , Epigenesis, Genetic
6.
Nat Commun ; 15(1): 2856, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38565851

Aging, chronic high-fat diet feeding, or housing at thermoneutrality induces brown adipose tissue (BAT) involution, a process characterized by reduction of BAT mass and function with increased lipid droplet size. Single nuclei RNA sequencing of aged mice identifies a specific brown adipocyte population of Ucp1-low cells that are pyroptotic and display a reduction in the longevity gene syntaxin 4 (Stx4a). Similar to aged brown adipocytes, Ucp1-STX4KO mice display loss of brown adipose tissue mass and thermogenic dysfunction concomitant with increased pyroptosis. Restoration of STX4 expression or suppression of pyroptosis activation protects against the decline in both mass and thermogenic activity in the aged and Ucp1-STX4KO mice. Mechanistically, STX4 deficiency reduces oxidative phosphorylation, glucose uptake, and glycolysis leading to reduced ATP levels, a known triggering signal for pyroptosis. Together, these data demonstrate an understanding of rapid brown adipocyte involution and that physiologic aging and thermogenic dysfunction result from pyroptotic signaling activation.


Adipose Tissue, Brown , Pyroptosis , Animals , Mice , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Signal Transduction , Thermogenesis/physiology , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
7.
Mol Biol Evol ; 41(4)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38606905

The molecular evolution of the mammalian heater protein UCP1 is a powerful biomarker to understand thermoregulatory strategies during species radiation into extreme climates, such as aquatic life with high thermal conductivity. While fully aquatic mammals lost UCP1, most semiaquatic seals display intact UCP1 genes, apart from large elephant seals. Here, we show that UCP1 thermogenic activity of the small-bodied harbor seal is equally potent compared to terrestrial orthologs, emphasizing its importance for neonatal survival on land. In contrast, elephant seal UCP1 does not display thermogenic activity, not even when translating a repaired or a recently highlighted truncated version. Thus, the thermogenic benefits for neonatal survival during terrestrial birth in semiaquatic pinnipeds maintained evolutionary selection pressure on UCP1 function and were only outweighed by extreme body sizes among elephant seals, fully eliminating UCP1-dependent thermogenesis.


Body Size , Seals, Earless , Thermogenesis , Uncoupling Protein 1 , Animals , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Thermogenesis/genetics , Seals, Earless/genetics , Evolution, Molecular , Phoca/genetics
8.
Mol Cell Endocrinol ; 588: 112225, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38570133

Although Liraglutide (Lira) increases serum irisin levels in type 2 diabetes mellitus (T2DM), it is unclear whether it induces expression of uncoupling protein 1 (UCP1) of adipocytes via promoting irisin secretion from skeletal muscle. Male T2DM rats were treated with 0.4 mg/kg/d Lira twice a day for 8 weeks, and the protein expression of phosphorylated AMP kinase (p-AMPK), phosphorylated acetyl-CoA carboxylase 1 (p-ACC1) and UCP1 in white adipose tissues were detected. Differentiated C2C12 cells were treated with palmitic acid (PA) and Lira to detect the secretion of irisin. Differentiated 3T3-L1 cells were treated with irisin, supernatant from Lira-treated C2C12 cells, Compound C or siAMPKα1, the triglyceride (TG) content and the related gene expression were measured. The transcriptome in irisin-treated differentiated 3T3-L1 cells was analyzed. Lira elevated serum irisin levels, decreased the adipocyte size and increased the protein expression of UCP1, p-AMPK and p-ACC1 in WAT. Moreover, it promoted the expression of PGC1α and FNDC5, the secretion of irisin in PA-treated differentiated C2C12 cells. The irisin and supernatant decreased TG synthesis and promoted the expression of browning- and lipolysis-related genes in differentiated 3T3-L1 cells. While Compound C and siAMPKα1 blocked AMPK activities and expression, irisin partly reversed the pathway. Finally, the transcriptome analysis indicated that differently expressed genes are mainly involved in browning and lipid metabolism. Overall, our findings showed that Lira modulated muscle-to-adipose signaling pathways in diabetes via irisin-mediated AMPKα/ACC1/UCP1/PPARα pathway. Our results suggest a new mechanism for the treatment of T2DM by Lira.


3T3-L1 Cells , Adipocytes , Fibronectins , Lipolysis , Liraglutide , Uncoupling Protein 1 , Animals , Fibronectins/metabolism , Fibronectins/genetics , Mice , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Male , Adipocytes/metabolism , Adipocytes/drug effects , Lipolysis/drug effects , Liraglutide/pharmacology , Rats , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , AMP-Activated Protein Kinases/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Rats, Sprague-Dawley , Cell Differentiation/drug effects , Gene Expression Regulation/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects
9.
J Nutr Biochem ; 128: 109625, 2024 Jun.
Article En | MEDLINE | ID: mdl-38521130

Maternal obesity might induce obesity and metabolic alterations in the progeny. The study aimed to determine the effect of supplementing obese mothers with Mel (Mel) on thermogenesis and inflammation. C57BL/6 female mice (mothers) were fed from weaning to 12 weeks control diet (C, 17% kJ as fat) or a high-fat diet (HF, 49% kJ as fat) and then matted with male mice fed the control diet. Melatonin (10 mg/kg daily) was supplemented to mothers during gestation and lactation, forming the groups C, CMel, HF, and HFMel (n = 10/group). Twelve-week male offspring were studied (plasma biochemistry, immunohistochemistry, protein, and gene expressions at the hypothalamus - Hyp, subcutaneous white adipose tissue - sWAT, and interscapular brown adipose tissue - iBAT). Comparing HFMel vs. HF offspring, fat deposits and plasmatic proinflammatory markers decreased. Also, HFMel showed decreased Hyp proinflammatory markers and neuropeptide Y (anabolic) expression but improved proopiomelanocortin (catabolic) expression. Besides, HFMel sWAT adipocytes changed to a beige phenotype with-beta-3 adrenergic receptor and uncoupling protein-1 activation, concomitant with browning genes activation, triggering the iBAT thermogenic activity. In conclusion, compelling evidence indicated the beneficial effects of supplementing obese mothers with Mel on the health of their mature male offspring. Mel led to sWAT browning-related gene enhancement, increased iBAT thermogenis, and mitigated hypothalamic inflammation. Also, principal component analysis of the data significantly separated the untreated obese mother progeny from the progeny of treated obese mothers. If confirmed in humans, the findings encourage a future guideline recommending Mel supplementation during pregnancy and breastfeeding.


Diet, High-Fat , Dietary Supplements , Hypothalamus , Inflammation , Melatonin , Mice, Inbred C57BL , Obesity, Maternal , Thermogenesis , Animals , Thermogenesis/drug effects , Female , Melatonin/pharmacology , Hypothalamus/metabolism , Hypothalamus/drug effects , Male , Pregnancy , Obesity, Maternal/metabolism , Inflammation/metabolism , Diet, High-Fat/adverse effects , Mice , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Obesity/metabolism , Obesity/drug therapy , Maternal Nutritional Physiological Phenomena , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics
10.
J Physiol Biochem ; 80(2): 407-420, 2024 May.
Article En | MEDLINE | ID: mdl-38492180

Current study investigated the impact of maternal and postnatal overnutrition on phenotype of adipose, in relation to offspring thermogenesis and sex. Female C57BL/6 J mice were fed with CHOW or high fat diet (HFD) for 2 weeks before mating, throughout gestation and lactation. At weaning, pups were fed to 9 weeks old with CHOW or HFD, which resulted in four groups for each gender--male or female: CHOW-CHOW (CC), CHOW-HFD (CH), HFD-CHOW (HC), HFD-HFD (HH). Maternal and post-weaning HFD enhanced thermogenic factors such as Acox1, Dio2 and Cox8b in iBAT of male and female offspring, but increased SIRT1, PGC-1α and UCP1 only in female. However, Acox1, Dio2 and Cox8b mRNA expression and SIRT1, PGC-1α and UCP1 protein expression were only enhanced upon maternal and post-weaning HFD in sWAT and pWAT of female offspring. Increased metrnl expression in adipose were observed in sex- and depot-specific manner, while enhanced circulating metrnl level was only observed in male offspring undergoing maternal HFD. Palmitic acid changed metrnl expression during preadipocytes differentiation and siRNA-mediated knockdown of metrnl inhibited preadipocyte differentiation. Female offspring were more prone to resist adverse outcomes induced by maternal and post-weaning overnutrition, which probably related to metrnl expression and thermogenesis.


Diet, High-Fat , Mice, Inbred C57BL , Overnutrition , Sex Characteristics , Thermogenesis , Animals , Female , Male , Diet, High-Fat/adverse effects , Overnutrition/metabolism , Pregnancy , Mice , Prenatal Exposure Delayed Effects/metabolism , Maternal Nutritional Physiological Phenomena , Adipose Tissue, Brown/metabolism , Adipose Tissue/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics
11.
J Biol Chem ; 300(3): 105760, 2024 Mar.
Article En | MEDLINE | ID: mdl-38367663

In the cold, the absence of the mitochondrial uncoupling protein 1 (UCP1) results in hyper-recruitment of beige fat, but classical brown fat becomes atrophied. Here we examine possible mechanisms underlying this phenomenon. We confirm that in brown fat from UCP1-knockout (UCP1-KO) mice acclimated to the cold, the levels of mitochondrial respiratory chain proteins were diminished; however, in beige fat, the mitochondria seemed to be unaffected. The macrophages that accumulated massively not only in brown fat but also in beige fat of the UCP1-KO mice acclimated to cold did not express tyrosine hydroxylase, the norepinephrine transporter (NET) and monoamine oxidase-A (MAO-A). Consequently, they could not influence the tissues through the synthesis or degradation of norepinephrine. Unexpectedly, in the cold, both brown and beige adipocytes from UCP1-KO mice acquired an ability to express MAO-A. Adipose tissue norepinephrine was exclusively of sympathetic origin, and sympathetic innervation significantly increased in both tissues of UCP1-KO mice. Importantly, the magnitude of sympathetic innervation and the expression levels of genes induced by adrenergic stimulation were much higher in brown fat. Therefore, we conclude that no qualitative differences in innervation or macrophage character could explain the contrasting reactions of brown versus beige adipose tissues to UCP1-ablation. Instead, these contrasting responses may be explained by quantitative differences in sympathetic innervation: the beige adipose depot from the UCP1-KO mice responded to cold acclimation in a canonical manner and displayed enhanced recruitment, while the atrophy of brown fat lacking UCP1 may be seen as a consequence of supraphysiological adrenergic stimulation in this tissue.


Adipose Tissue, Beige , Adipose Tissue, Brown , Sympathetic Nervous System , Thermogenesis , Uncoupling Protein 1 , Animals , Mice , Adipose Tissue, Beige/innervation , Adipose Tissue, Beige/metabolism , Adipose Tissue, Brown/innervation , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Adrenergic Agents/metabolism , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Norepinephrine/metabolism , Thermogenesis/genetics , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Mice, Knockout , Acclimatization/genetics , Sympathetic Nervous System/physiology , Macrophages/metabolism
12.
Sci Rep ; 14(1): 4932, 2024 02 28.
Article En | MEDLINE | ID: mdl-38418847

One potential approach for treating obesity is to increase energy expenditure in brown and white adipose tissue. Here we aimed to achieve this outcome by targeting mitochondrial uncoupler compounds selectively to adipose tissue, thus avoiding side effects from uncoupling in other tissues. Selective drug accumulation in adipose tissue has been observed with many lipophilic compounds and dyes. Hence, we explored the feasibility of conjugating uncoupler compounds with a lipophilic C8-hydrocarbon chain via an ether bond. We found that substituting the trifluoromethoxy group in the uncoupler FCCP with a C8-hydrocarbon chain resulted in potent uncoupling activity. Nonetheless, the compound did not elicit therapeutic effects in mice, likely as a consequence of metabolic instability resulting from rapid ether bond cleavage. A lipophilic analog of the uncoupler compound 2,6-dinitrophenol, in which a C8-hydrocarbon chain was conjugated via an ether bond in the para-position (2,6-dinitro-4-(octyloxy)phenol), exhibited increased uncoupling activity compared to the parent compound. However, in vivo pharmacokinetics studies suggested that 2,6-dinitro-4-(octyloxy)phenol was also metabolically unstable. In conclusion, conjugation of a hydrophobic hydrocarbon chain to uncoupler compounds resulted in sustained or improved uncoupling activity. However, an ether bond linkage led to metabolic instability, indicating the need to conjugate lipophilic groups via other chemical bonds.


Adipose Tissue, Brown , Adipose Tissue , Mice , Animals , Adipose Tissue, Brown/metabolism , Adipose Tissue/metabolism , Obesity/metabolism , Energy Metabolism , Adipose Tissue, White/metabolism , Ethers , Phenols/pharmacology , Uncoupling Protein 1/metabolism
13.
J Acupunct Meridian Stud ; 17(1): 1-11, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38409809

Background: : Brown adipose tissue (BAT) is a unique thermogenic tissue in mammals mediated by uncoupling protein 1 (UCP1). The energy generated by glucose and triglyceride metabolism is released and transmitted throughout the body as heat. Understanding the factors influencing BAT function is crucial to determine its metabolic significance and effects on overall health. Although studies have shown that electroacupuncture (EA) at specific acupoints (e.g., ST36) can stimulate BAT, its effects at other acupoints are not well understood. Further research is needed to investigate the potential effects of EA at these acupoints and their association with BAT activation. Objectives: : This study aimed to investigate the effects of EA at the GV20 and EX-HN3 acupoints. Specifically, the effects of EA on BAT thermogenesis were analyzed by infrared thermography, western blotting, and real-time polymerase chain reaction (PCR). Methods: : A total of 12 C57BL/6J mice were randomly divided into the EA and control groups. The EA group received EA at GV20 and EX-HN3 for 20 min once daily for 14 days. The control group underwent the same procedure but without EA. The core body temperature was monitored. Infrared thermal images of the back of each mouse in both groups were captured. BAT samples were collected after euthanasia to analyze UCP1 protein and UCP1 mRNA. Results: : The average skin temperature in the scapular region of the EA group was increased by 1.1℃ compared with that of the C group (p < 0.05). Additionally, the average temperature along the governor vessel in the EA group was increased by 1.6℃ (p = 0.045). EA significantly increased the expression of UCP1 protein (p = 0.001) and UCP1 mRNA (p = 0.002) in BAT, suggesting a potential link between EA and BAT thermogenesis. Conclusion: : EA induced BAT thermogenesis, suggesting GV20 and EX-HN3 as potential acupoints for BAT stimulation. The experimental results also highlighted unique meridian characteristics as demonstrated by elevated skin temperature along the governor vessel in mice.


Adipose Tissue, Brown , Electroacupuncture , Mice , Animals , Adipose Tissue, Brown/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Mice, Inbred C57BL , Thermogenesis/physiology , RNA, Messenger/metabolism , Mammals/metabolism
14.
Cell Death Differ ; 31(4): 479-496, 2024 Apr.
Article En | MEDLINE | ID: mdl-38332049

The appropriate transcriptional activity of PPARγ is indispensable for controlling inflammation, tumor and obesity. Therefore, the identification of key switch that couples PPARγ activation with degradation to sustain its activity homeostasis is extremely important. Unexpectedly, we here show that acetyl-CoA synthetase short-chain family member 2 (ACSS2) critically controls PPARγ activity homeostasis via SIRT1 to enhance adipose plasticity via promoting white adipose tissues beiging and brown adipose tissues thermogenesis. Mechanistically, ACSS2 binds directly acetylated PPARγ in the presence of ligand and recruits SIRT1 and PRDM16 to activate UCP1 expression. In turn, SIRT1 triggers ACSS2 translocation from deacetylated PPARγ to P300 and thereafter induces PPARγ polyubiquitination and degradation. Interestingly, D-mannose rapidly activates ACSS2-PPARγ-UCP1 axis to resist high fat diet induced obesity in mice. We thus reveal a novel ACSS2 function in coupling PPARγ activation with degradation via SIRT1 and suggest D-mannose as a novel adipose plasticity regulator via ACSS2 to prevent obesity.


Homeostasis , PPAR gamma , Sirtuin 1 , Animals , PPAR gamma/metabolism , Mice , Sirtuin 1/metabolism , Sirtuin 1/genetics , Acetate-CoA Ligase/metabolism , Acetate-CoA Ligase/genetics , Mice, Inbred C57BL , Humans , Obesity/metabolism , Obesity/pathology , Transcription Factors/metabolism , Diet, High-Fat , Male , Adipose Tissue, Brown/metabolism , Thermogenesis , Mannose/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Adipose Tissue, White/metabolism , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Adipose Tissue/metabolism
15.
Biochem Pharmacol ; 221: 116042, 2024 Mar.
Article En | MEDLINE | ID: mdl-38325495

Fibroblast growth factor 21 (FGF21) reduces body weight, which was attributed to induced energy expenditure (EE). Conflicting data have been published on the role of uncoupling protein 1 (UCP1) in this effect. Therefore, we aimed to revisit the thermoregulatory effects of FGF21 and their implications for body weight regulation. We found that an 8-day treatment with FGF21 lowers body weight to similar extent in both wildtype (WT) and UCP1-deficient (KO) mice fed high-fat diet. In WT mice, this effect is solely due to increased EE, associated with a strong activation of UCP1 and with excess heat dissipated through the tail. This thermogenesis takes place in the interscapular region and can be attenuated by a ß-adrenergic inhibitor propranolol. In KO mice, FGF21-induced weight loss correlates with a modest increase in EE, which is independent of adrenergic signaling, and with a reduced energy intake. Interestingly, the gene expression profile of interscapular brown adipose tissue (but not subcutaneous white adipose tissue) of KO mice is massively affected by FGF21, as shown by increased expression of genes encoding triacylglycerol/free fatty acid cycle enzymes. Thus, FGF21 elicits central thermogenic and pyretic effects followed by a concomitant increase in EE and body temperature, respectively. The associated weight loss is strongly dependent on UCP1-based thermogenesis. However, in the absence of UCP1, alternative mechanisms of energy dissipation may contribute, possibly based on futile triacylglycerol/free fatty acid cycling in brown adipose tissue and reduced food intake.


Fatty Acids, Nonesterified , Fibroblast Growth Factors , Weight Loss , Animals , Mice , Mice, Obese , Uncoupling Protein 1/genetics , Body Weight , Energy Metabolism , Adrenergic Agents , Triglycerides
16.
Biochem Biophys Res Commun ; 703: 149689, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38382361

The escalating incidence of metabolic pathologies such as obesity and diabetes mellitus underscores the imperative for innovative therapeutics targeting lipid metabolism modulation. Within this context, augmenting thermogenic processes in adipose cells emerges as a viable therapeutic approach. Given the limitations of previous ß3-adrenergic receptor (ß3-AR) agonist treatments in human diseases, there is an increasing focus on therapies targeting the ß2-adrenergic receptor (ß2-AR). Olodaterol (OLO) is a potent ß2-AR agonist that is a potential novel pharmacological candidate in this area. Our study explores the role and underlying mechanisms of OLO in enhancing brown adipose thermogenesis, providing robust evidence from in vitro and in vivo studies. OLO demonstrated a dose-dependent enhancement of lipolysis, notably increasing the expression of Uncoupling Protein 1 (UCP1) and raising the rate of oxygen consumption in primary brown adipocytes. This suggests a significant increase in thermogenic potential and energy expenditure. The administration of OLO to murine models noticeably enhanced cold-induced nonshivering thermogenesis. OLO elevated UCP1 expression in the brown adipose tissue of mice. Furthermore, it promoted brown adipocyte thermogenesis by activating the ß2-AR/cAMP/PKA signaling cascades according to RNA sequencing, western blotting, and molecular docking analysis. This investigation underscores the therapeutic potential of OLO for metabolic ailments and sheds light on the intricate molecular dynamics of adipocyte thermogenesis, laying the groundwork for future targeted therapeutic interventions in human metabolic disorders.


Adipocytes, Brown , Benzoxazines , Thermogenesis , Mice , Humans , Animals , Adipocytes, Brown/metabolism , Molecular Docking Simulation , Thermogenesis/genetics , Adipose Tissue, Brown/metabolism , Signal Transduction , Obesity/metabolism , Adrenergic beta-Agonists , Receptors, Adrenergic , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
17.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38339044

Spexin (SPX) is a novel adipokine that plays an emerging role in metabolic diseases due to its involvement in carbohydrate homeostasis, weight loss, appetite control, and gastrointestinal movement, among others. In obese patients, SPX plasma levels are reduced. Little is known about the relationship between SPX and white adipose tissue (WAT) thermogenesis. Therefore, the aim of the present study was to evaluate the role of SPX in this process. C57BL/6J male mice were treated or not with SPX for ten days. On day 3, mice were randomly divided into two groups: one kept at room temperature and the other kept at cold temperature (4 °C). Caloric intake and body weight were recorded daily. At the end of the protocol, plasma, abdominal (epididymal), subcutaneous (inguinal), and brown AT (EAT, IAT, and BAT, respectively) depots were collected for measurements. We found that SPX treatment reduced Uncoupling protein 1 levels in WAT under both basal and cold conditions. SPX also reduced cox8b and pgc1α mRNA levels and mitochondrial DNA, principally in IAT. SPX did not modulate the number of beige precursors. SPX decreased spx levels in IAT depots and galr2 in WAT depots. No differences were observed in the BAT depots. In conclusion, we showed, for the first time, that SPX treatment in vivo reduced the thermogenic process in subcutaneous and abdominal AT, being more evident under cold stimulation.


Adipose Tissue, Brown , Cold Temperature , Peptide Hormones , Thermogenesis , Animals , Humans , Male , Mice , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/physiology , Adipose Tissue, White/metabolism , Mice, Inbred C57BL , Thermogenesis/drug effects , Thermogenesis/physiology , Uncoupling Protein 1/metabolism , Peptide Hormones/pharmacology , Peptide Hormones/physiology
18.
Plant Physiol Biochem ; 207: 108324, 2024 Feb.
Article En | MEDLINE | ID: mdl-38183903

Three genes encoding mitochondrial uncoupling proteins (UCPs) have been described in Arabidopsis thaliana (UCP1 to UCP3). In plants, UCPs may act as an uncoupler or as an aspartate/glutamate exchanger. For instance, much of the data regarding UCP functionality were obtained for the UCP1 and UCP2 isoforms compared with UCP3. Here, to get a better understanding about the concerted action of UCP1 and UCP3 in planta, we investigated the transcriptome and metabolome profiles of ucp1 ucp3 double mutant plants during the vegetative phase. For that, 21-day-old mutant plants, which displayed the most evident phenotypic alterations compared to wild type (WT) plants, were employed. The double knockdown of UCP1 and UCP3, isoforms unequivocally present inside the mitochondria, promoted important transcriptional reprogramming with alterations in the expression of genes related to mitochondrial and chloroplast function as well as those responsive to abiotic stress, suggesting disturbances throughout the cell. The observed transcriptional changes were well integrated with the metabolomic data of ucp1 ucp3 plants. Alterations in metabolites related to primary and secondary metabolism, particularly enriched in the Alanine, Aspartate and Glutamate metabolism, were detected. These findings extend our knowledge of the underlying roles played by UCP3 in concert with UCP1 at the whole plant level.


Arabidopsis , Adipose Tissue, Brown/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Aspartic Acid , Glutamates/metabolism , Ion Channels/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Protein Isoforms/metabolism , Uncoupling Protein 1/metabolism , Uncoupling Protein 3/metabolism
19.
Cell Metab ; 36(3): 526-540.e7, 2024 03 05.
Article En | MEDLINE | ID: mdl-38272036

That uncoupling protein 1 (UCP1) is the sole mediator of adipocyte thermogenesis is a conventional viewpoint that has primarily been inferred from the attenuation of the thermogenic output of mice genetically lacking Ucp1 from birth (germline Ucp1-/-). However, germline Ucp1-/- mice harbor secondary changes within brown adipose tissue. To mitigate these potentially confounding ancillary changes, we constructed mice with inducible adipocyte-selective Ucp1 disruption. We find that, although germline Ucp1-/- mice succumb to cold-induced hypothermia with complete penetrance, most mice with the inducible deletion of Ucp1 maintain homeothermy in the cold. However, inducible adipocyte-selective co-deletion of Ucp1 and creatine kinase b (Ckb, an effector of UCP1-independent thermogenesis) exacerbates cold intolerance. Following UCP1 deletion or UCP1/CKB co-deletion from mature adipocytes, moderate cold exposure triggers the regeneration of mature brown adipocytes that coordinately restore UCP1 and CKB expression. Our findings suggest that thermogenic adipocytes utilize non-paralogous protein redundancy-through UCP1 and CKB-to promote cold-induced energy dissipation.


Adipocytes, Brown , Adipose Tissue, Brown , Animals , Mice , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Thermogenesis , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Creatine Kinase, BB Form/metabolism
20.
J Physiol Biochem ; 80(2): 303-315, 2024 May.
Article En | MEDLINE | ID: mdl-38175499

Lactate, an important exercise metabolite, induces white adipose tissue browning by upregulated uncoupling protein 1 (UCP1) expression. However, the function of lactate during browning of inguinal white adipose tissue (iWAT) caused by exercise is unclear. Here, we considered lactate as an exercise supplement and investigated the effects of chronic pre-exercise lactate administration on energy metabolism and adipose tissue browning. C57B/L6 male mice (5 weeks of age) were divided into six groups. We evaluated the changes in blood lactate levels in each group of mice after the intervention. Energy expenditure was measured after the intervention immediately by indirect calorimetry. The marker protein levels and gene expressions were determined by western-blot and quantitative real-time PCR. HIIT significantly decreased adipose tissue weight while increased energy expenditure and the expression of UCP1 in iWAT; however, these regulations were inhibited in the DCA+HIIT group. Compared with the MICT and LAC groups, long-term lactate injection before MICT led to lower WAT weight to body weight ratios and higher energy expenditure in mice. Furthermore, the marker genes of browning in iWAT, such as Ucp1 and Pparγ, were significantly increased in the LAC+MICT group than in the other groups, and the expression of monocarboxylate transporter-1 (Mct1) mRNA was also significantly increased. Lactate was involved in exercise-mediated browning of iWAT, and its mechanism might be the increased of lactate transport through MCT1 or PPARγ upregulation induced by exercise. These findings suggest exogenous lactate may be a new exercise supplement to regulate metabolism.


Adipose Tissue, Brown , Adipose Tissue, White , Energy Metabolism , Lactic Acid , Mice, Inbred C57BL , Physical Conditioning, Animal , Symporters , Uncoupling Protein 1 , Animals , Male , Adipose Tissue, White/metabolism , Lactic Acid/metabolism , Lactic Acid/blood , Adipose Tissue, Brown/metabolism , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Mice , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , PPAR gamma/metabolism , PPAR gamma/genetics
...